Cannabis Research for Tetrahydrocannabinolic Acid (THCA)
Tetrahydrocannabinolic Acid (THCA) is the most abundant non-psychoactive Cannabinoid found in Cannabis. The health benefits provided by THCA are most well absorbed by the body through a raw method of consumption such as cannabis juicing. THCA works to relieve inflammation and pain, and is an ideal cannabinoid for treating symptoms of such conditions as arthritis, seizures.
THCA is an effective neuroprotectant, so it is beneficial in the treatment of such conditions as multiple sclerosis, Alzheimer’s and Parkinson’s disease. It can also help to stimulate the appetite in patients suffering from cachexia and anorexia nervosa. Most impressively, research shows that THC-A helps to slow the proliferation of cancerous cells.
Below is a Library of Cannabis Research Studies for Tetrahydrocannabinolic Acid (THCA).
In Vitro and In Vivo Pharmacological Activity of Minor Cannabinoids Isolated From Cannabis Sativa
Scientific Reports | November 2020Abstract: “The Cannabis sativa plant contains more than 120 cannabinoids. With the exceptions of ∆9-tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD), comparatively little is known about the pharmacology of the less-abundant plant-derived (phyto) cannabinoids. The best-studied transducers of cannabinoid-dependent effects are type 1 and type 2 cannabinoid receptors (CB1R, CB2R). Partial agonism of CB1R by ∆9-THC is known to bring about the ‘high’ associated with Cannabis use, as well as the pain-, appetite-, and anxiety-modulating effects that are potentially therapeutic. CB2R activation by certain cannabinoids has been associated with anti-inflammatory activities. We assessed the activity of 8 phytocannabinoids at human CB1R, and CB2R in Chinese hamster ovary (CHO) cells stably expressing these receptors and in C57BL/6 mice in an attempt to better understand their pharmacodynamics. Specifically, ∆9-THC, ∆9-tetrahydrocannabinolic acid (∆9-THCa), ∆9-tetrahydrocannabivarin (THCV), CBD, cannabidiolic acid (CBDa), cannabidivarin (CBDV), cannabigerol (CBG), and cannabichromene (CBC) were evaluated. Compounds were assessed for their affinity to receptors, ability to inhibit cAMP accumulation, βarrestin2 recruitment, receptor selectivity, and ligand bias in cell culture; and cataleptic, hypothermic, anti-nociceptive, hypo locomotive, and anxiolytic effects in mice. Our data reveal partial agonist activity for many phytocannabinoids tested at CB1R and/or CB2R, as well as in vivo responses often associated with activation of CB1R. These data build on the growing body of literature showing cannabinoid receptor-dependent pharmacology for these less-abundant phytocannabinoids and are critical in understanding the complex and interactive pharmacology of Cannabis-derived molecules.” — Study
Evaluation of the Possible Anticonvulsant Effect of D9-Tetrahydrocannabinolic Acid in Murine Seizure Models
Cannabis and Cannabinoid Research | 2020Abstract: “Introduction: The cannabinoid D9-tetrahydrocannabinolic acid (D9-THCA) has long been suggested in review articles and anecdotal reports to be anticonvulsant; yet, there is scant evidence supporting this notion. The objective of this study was to interrogate the anticonvulsant potential of D9-THCA in various seizure models—the Scn1a + / mouse model of Dravet syndrome, the 6-Hz model of psychomotor seizures and the maximal electroshock (MES) model of generalized tonic-clonic seizures…We examined the effect of acute D9-THCA treatment against hyperthermia-induced seizures, and subchronic treatment on spontaneous seizures and survival in the Scn1a + / mice. We also studied the effect of acute D9-THCA treatment on the critical current thresholds in the 6-Hz and MES tests using outbred Swiss mice. Highly purified D9-THCA was used in the studies or a mixture of D9-THCA and D9-THC…We observed mixed anticonvulsant and proconvulsant effects of D9-THCA across the seizure models. Highly pure D9-THCA did not affect hyperthermia-induced seizures in Scn1a + / mice. A D9-THCA/D9-THC mixture was anticonvulsant in the 6-Hz threshold test, but purified D9-THCA and D9-THC had no effect. Conversely, both D9-THCA and D9-THC administered individually were proconvulsant in the MES threshold test but had no effect when administered as a D9-THCA/D9-THC mixture. The D9-THCA/D9-THC mixture, however, increased spontaneous seizure severity and increased mortality of Scn1a + / mice…The anticonvulsant profile of D9-THCA was variable depending on the seizure model used and presence of D9-THC. Because of the unstable nature of D9-THCA, further exploration of D9-THCA through formal anticonvulsant drug development is problematic without stabilization. Future studies may better focus on determining the mechanisms by which combined D9-THCA and D9-THC alters seizure thresholds, as this may uncover novel targets for the control of refractory partial seizures.” — Study
Tetrahydrocannabinolic Acid is a Potent PPARγ Agonist With Neuroprotective Activity.
British Journal of Pharmacology | August 2017Abstract: “Phytocannabinoids are produced in Cannabis sativa L. in acidic form and are decarboxylated upon heating, processing, and storage. While the biological effects of decarboxylated cannabinoids such as Δ9-tetrahydrocannabinol (Δ9-THC) have been extensively investigated, the bioactivity of Δ9-THCA is largely unknown, despite its occurrence in different Cannabis preparations. The aim of this study was to determine whether Δ9-THCA modulates the PPARγ pathway and has neuroprotective activity…The effects of six phytocannabinoids on PPARγ binding and transcriptional activity were investigated. The effect of Δ9-THCA on mitochondrial biogenesis and PGC-1α expression was investigated in N2a cells. The neuroprotective effect was analysed in STHdhQ111/Q111 cells expressing a mutated form of the huntingtin protein, and in N2a cells infected with an adenovirus carrying human huntingtin containing 94 polyQ repeats (mHtt-q94). In vivo neuroprotective activity of Δ9-THCA was investigated in mice intoxicated with the mitochondrial toxin 3-nitropropionic acid (3-NP)…Cannabinoid acids bind and activate PPARγ with higher potency than their decarboxylated products. Δ9-THCA increases mitochondrial mass in neuroblastoma N2a cells, and prevents cytotoxicity induced by serum deprivation in STHdhQ111/Q111 cells and by mutHtt-q94 in N2a cells. Δ9-THCA, through a PPARγ-dependent pathway, was neuroprotectant in mice intoxicated with 3-NP, improving motor deficits and preventing striatal degeneration. In addition, Δ9-THCA attenuated microgliosis, astrogliosis and the upregulation of proinflammatory markers induced by 3-NP…Δ9-THCA shows potent neuroprotective activity, worth consideration for the treatment of Huntington’s Disease and possibly other neurodegenerative and neuroinflammatory diseases.” — Study
Decarboxylation Study of Acidic Cannabinoids: A Novel Approach Using Ultra-High-Performance Supercritical Fluid Chromatography Photodiode Array-Mass Spectrometry
Cannabis and Cannabinoid Research | December 2016Abstract: “Decarboxylation is an important step for efficient production of the major active components in cannabis, for example, Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG). These cannabinoids do not occur in significant concentrations in cannabis but can be formed by decarboxylation of their corresponding acids, the predominant cannabinoids in the plant. Study of the kinetics of decarboxylation is of importance for phytocannabinoid isolation and dosage formulation for medical use. Efficient analytical methods are essential for simultaneous detection of both neutral and acidic cannabinoids…C. sativa extracts were used for the studies. Decarboxylation conditions were examined at 80°C, 95°C, 110°C, 130°C, and 145°C for different times up to 60 min in a vacuum oven. An ultra-high performance supercritical fluid chromatography/photodiode array-mass spectrometry (UHPSFC/PDA-MS) method was used for the analysis of acidic and neutral cannabinoids before and after decarboxylation…Decarboxylation at different temperatures displayed an exponential relationship between concentration and time indicating a first-order or pseudo-first-order reaction. The rate constants for Δ9-tetrahydrocannabinolic acid-A (THCA-A) were twice those of the cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA). Decarboxylation of THCA-A was forthright with no side reactions or by-products. Decarboxylation of CBDA and CBGA was not as straightforward due to the unexplained loss of reactants or products…The reported UHPSFC/PDA-MS method provided consistent and sensitive analysis of phytocannabinoids and their decarboxylation products and degradants. The rate of change of acidic cannabinoid concentrations over time allowed for determination of rate constants. Variations of rate constants with temperature yielded values for reaction energy.” — Study
Can You Pass the Acid Test? Critical Review and Novel Therapeutic Perspectives of D9-Tetrahydrocannabinolic Acid A
Cannabis and Cannabinoid Research | 2016Abstract: “D9-tetrahydrocannabinolic acid A (THCA-A) is the acidic precursor of D9-tetrahydrocannabinol (THC), the main psychoactive compound found in Cannabis sativa. THCA-A is biosynthesized and accumulated in glandular trichomes present on flowers and leaves, where it serves protective functions and can represent up to 90% of the total THC contained in the plant. THCA-A slowly decarboxylates to form THC during storage and fermentation and can further degrade to cannabinol. Decarboxylation also occurs rapidly during baking of edibles, smoking, or vaporizing, the most common ways in which the general population consumes Cannabis. Contrary to THC, THCA-A does not elicit psychoactive effects in humans and, perhaps for this reason, its pharmacological value is often neglected. In fact, many studies use the term ‘‘THCA’’ to refer indistinctly to several acid derivatives of THC. Despite this perception, many in vitro studies seem to indicate that THCA-A interacts with a number of molecular targets and displays a robust pharmacological profile that includes potential anti-inflammatory, immunomodulatory, neuroprotective, and antineoplastic properties. Moreover, the few in vivo studies performed with THCA-A indicate that this compound exerts pharmacological actions in rodents, likely by engaging type-1 cannabinoid (CB1) receptors. Although these findings may seem counterintuitive due to the lack of cannabinoid-related psychoactivity, a careful perusal of the available literature yields a plausible explanation to this conundrum and points toward novel therapeutic perspectives for raw, unheated Cannabis preparations in humans.” — Study
Tetrahydrocannabinolic Acid Reduces Nausea-Induced Conditioned Gaping in Rats and Vomiting in Suncus Murinus.
British Journal of Pharmacology | October 2013Abstract: “We evaluated the anti-emetic and anti-nausea properties of the acid precursor of Δ9-tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), and determined its mechanism of action in these animal models…We investigated the effect of THCA on lithium chloride- (LiCl) induced conditioned gaping (nausea-induced behaviour) to a flavour, and context (a model of anticipatory nausea) in rats, and on LiCl-induced vomiting in Suncus murinus. Furthermore, we investigated THCA’s ability to induce hypothermia and suppress locomotion [rodent tasks to assess cannabinoid1 (CB1) receptor agonist-like activity], and measured plasma and brain THCA and THC levels. We also determined whether THCA’s effect could be blocked by pretreatment with SR141716 (SR, a CB1 receptor antagonist)…THCA potently reduced conditioned gaping in rats and vomiting in S. murinus, effects that were blocked by SR. These data suggest that THCA may be a more potent alternative to THC in the treatment of nausea and vomiting.” — Study
The Detection of THCA Using 2-Dimensional Gas Chromatography-Tandem Mass Spectrometry in Human Fingernail Clippings: Method Validation and Comparison with Head Hair
American Journal of Analytical Chemistry | August 20013Abstract: “Marijuana use as well as abuse is a significant public health and public safety concern in the United States and using hair to identify marijuana users and abusers has been gaining acceptance in a number of venues including workplace, court ordered, and substance abuse treatment monitoring. After the presentation of a fully validated 2-dimensional gas chromatography-tandem mass spectrometry method for the detection of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCA), the chief metabolite of the main psychoactive compound in marijuana, Δ9-tetrahydrocannabinol (THC), we evaluated the usefulness of fingernail clippings as an alternative specimen type to hair by the analysis of a set of 60 matched pairs of head hair and fingernail clippings. The limit of detection was 10 fg/mg, the limit of quantitation was 20 fg/mg, and the assay was linear from 20 fg/mg to 500 fg/mg. The intra- and inter-assay imprecision and bias studies at 4 different concentrations (50, 100, 500, and 1000 fg/mg) were acceptable where all % Target observations were within 16% of their expected concentrations and all %CV calculations were less than 13.5%. THCA was detectable in more fingernail specimens (53.3%) than hair specimens (46.7%) and the mean concentrations in nails were on average 4.9 times higher than in hair (1813 fg/mg and 364 fg/mg, respectively). The THCA concentrations in hair and nail were strongly associated (r = 0.974, P < 0.01, n = 60) and the association was significant. The study demonstrated that fin- gernail clippings are a suitable alternative specimen type to hair to monitor for marijuana use and abuse.” — Study
Non-THC Cannabinoids Inhibit Prostate Carcinoma Growth In Vitro and in Vivo: Pro-Apoptotic Effects and Underlying Mechanisms
British Journal of Pharmacology | January 2013Abstract: “Cannabinoid receptor activation induces prostate carcinoma cell (PCC) apoptosis, but cannabinoids other than Δ9-tetrahydrocannabinol (THC), which lack potency at cannabinoid receptors, have not been investigated. Some of these compounds antagonize transient receptor potential melastatin type-8 (TRPM8) channels, the expression of which is necessary for androgen receptor (AR)-dependent PCC survival…Cannabidiol (CBD) significantly inhibited cell viability. Other compounds became effective in cells deprived of serum for 24 h. Several BDS were more potent than the pure compounds in the presence of serum. CBD-BDS (i.p.) potentiated the effects of bicalutamide and docetaxel against LNCaP and DU-145 xenograft tumours and, given alone, reduced LNCaP xenograft size. CBD (1–10 µM) induced apoptosis and induced markers of intrinsic apoptotic pathways (PUMA and CHOP expression and intracellular Ca2+). In LNCaP cells, the pro-apoptotic effect of CBD was only partly due to TRPM8 antagonism and was accompanied by down-regulation of AR, p53 activation and elevation of reactive oxygen species. LNCaP cells differentiated to androgen-insensitive neuroendocrine-like cells were more sensitive to CBD-induced apoptosis….These data support the clinical testing of CBD against prostate carcinoma.” — Study
Structure and Function of ∆1-Tetrahydrocannabinolic Acid (THCA) Synthase, the Enzyme Controlling the Psychoactivity of Cannabis Sativa.
Journal of Molecular Biology | October 2012Abstract: “∆1-Tetrahydrocannabinolic acid (THCA) synthase catalyzes the oxidative cyclization of cannabigerolic acid (CBGA) into THCA, the precursor of the primary psychoactive agent ∆1-tetrahydrocannabinol in Cannabis sativa. The enzyme was overproduced in insect cells, purified, and crystallized in order to investigate the structure–function relationship of THCA synthase, and the tertiary structure was determined to 2.75 Å resolution by X-ray crystallography (Rcryst = 19.9%). The THCA synthase enzyme is a member of the p-cresol methyl-hydroxylase superfamily, and the tertiary structure is divided into two domains (domains I and II), with a flavin adenine dinucleotide coenzyme positioned between each domain and covalently bound to His114 and Cys176 (located in domain I). The catalysis of THCA synthesis involves a hydride transfer from C3 of CBGA to N5 of flavin adenine dinucleotide and the deprotonation of O6′ of CBGA. The ionized residues in the active site of THCA synthase were investigated by mutational analysis and X-ray structure. Mutational analysis indicates that the reaction does not involve the carboxyl group of Glu442 that was identified as the catalytic base in the related berberine bridge enzyme but instead involves the hydroxyl group of Tyr484. Mutations at the active‐site residues His292 and Tyr417 resulted in a decrease in, but not elimination of, the enzymatic activity of THCA synthase, suggesting a key role for these residues in substrate binding and not direct catalysis.” — Study
Effects of Cannabinoids Δ(9)-Tetrahydrocannabinol, Δ(9)-Tetrahydrocannabinolic Acid and Cannabidiol in MPP+ Affected Murine Mesencephalic Cultures
Phytomedicine | June 2012Abstract: “Cannabinoids derived from Cannabis sativa demonstrate neuroprotective properties in various cellular and animal models. Mitochondrial impairment and consecutive oxidative stress appear to be major molecular mechanisms of neurodegeneration. Therefore we studied some major cannabinoids, i.e. delta-9-tetrahydrocannabinolic acid (THCA), delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in mice mesencephalic cultures for their protective capacities against 1-methyl-4-phenyl pyridinium (MPP(+)) toxicity. MPP(+) is an established model compound in the research of parkinsonism that acts as a complex I inhibitor of the mitochondrial respiratory chain, resulting in excessive radical formation and cell degeneration. MPP(+) (10 μM) was administered for 48 h at the 9th DIV with or without concomitant cannabinoid treatment at concentrations ranging from 0.01 to 10 μM. All cannabinoids exhibited in vitro antioxidative action ranging from 669 ± 11.1 (THC), 16 ± 3.2 (THCA) to 356 ± 29.5 (CBD) μg Trolox (a vitamin E derivative)/mg substance in the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay. Cannabinoids were without effect on the morphology of dopaminergic cells stained by tyrosine hydroxylase (TH) immunoreaction. THC caused a dose-dependent increase of cell count up to 17.3% at 10 μM, whereas CBD only had an effect at highest concentrations (decrease of cell count by 10.1-20% at concentrations of 0.01-10 μM). It influenced the viability of the TH immunoreactive neurons significantly, whereas THCA exerts no influence on dopaminergic cell count. Exposure of cultures to 10 μM of MPP(+) for 48 h significantly decreased the number of TH immunoreactive neurons by 44.7%, and shrunken cell bodies and reduced neurite lengths could be observed. Concomitant treatment of cultures with cannabinoids rescued dopaminergic cells. Compared to MPP(+) treated cultures, THC counteracted toxic effects in a dose-dependent manner. THCA and CBD treatment at a concentration of 10 μM lead to significantly increased cell counts to 123% and 117%, respectively. Even though no significant preservation or recovery of neurite outgrowth to control values could be observed, our data show that cannabinoids THC and THCA protect dopaminergic neurons against MPP(+) induced cell death.” — Study
Effects of Cannabinoids and Cannabinoid-Enriched Cannabis Extracts on TRP Channels and Endocannabinoid Metabolic Enzymes.
British Journal of Pharmacology | August 2011Abstract: “Cannabidiol (CBD) and Δ(9) -tetrahydrocannabinol (THC) interact with transient receptor potential (TRP) channels and enzymes of the endocannabinoid system…CBD, CBG, CBGV and THCV stimulated and desensitized human TRPV1. CBC, CBD and CBN were potent rat TRPA1 agonists and desensitizers, but THCV-BDS was the most potent compound at this target. CBG-BDS and THCV-BDS were the most potent rat TRPM8 antagonists. All non-acid cannabinoids, except CBC and CBN, potently activated and desensitized rat TRPV2. CBDV and all the acids inhibited DAGLα. Some BDS, but not the pure compounds, inhibited MAGL. CBD was the only compound to inhibit FAAH, whereas the BDS of CBC > CBG > CBGV inhibited NAAA. CBC = CBG > CBD inhibited ACU, as did the BDS of THCVA, CBGV, CBDA and THCA, but the latter extracts were more potent inhibitors.” — Study
Non-Psychotropic Plant Cannabinoids: New Therapeutic Opportunities from an Ancient Herb
Trends in Pharmacological Sciences | September 2, 2009Abstract: “D9-tetrahydrocannabinol binds cannabinoid (CB1 and CB2) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of cardiovascular, gastrointestinal and liver functions). The well-known psychotropic effects of D9- tetrahydrocannabinol, which are mediated by activation of brain CB1 receptors, have greatly limited its clinical use. However, the plant Cannabis contains many cannabinoids with weak or no psychoactivity that, therapeutically, might be more promising than D9-tetrahydrocannabinol. Here, we provide an overview of the recent pharmacological advances, novel mechanisms of action, and potential therapeutic applications of such non-psychotropic plant-derived cannabinoids. Special emphasis is given to cannabidiol, the possible applications of which have recently emerged in inflammation, diabetes, cancer, affective and neurodegenerative diseases, and to D9-tetrahydrocannabivarin, a novel CB1 antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity.” — Study
Cannabis Tea Revisited: A Systematic Evaluation of the Cannabinoid Composition of Cannabis Tea
Journal of Ethnopharmacology | August 2007Abstract: “Cannabis is one of the oldest known medicinal plants, and a large variety of biological activities have been described. The main constituents, the cannabinoids, are thought to be most important for these activities. Although smoking of cannabis is by far the most common way of consumption, a significant part of medicinal users consume it in the form of a tea. However, not much is known about the composition of cannabis tea, or the effect of different parameters during preparation, handling or storage. In this study we used the high-grade cannabis available in Dutch pharmacies to study the cannabinoid composition of tea under standardized and quantitative conditions. Experimental conditions were systematically varied in order to mimic the possible variations made by medicinal users. During analysis there was a specific focus on the cannabinoid tetrahydrocannabinol and its acidic precursor, tetrahydrocannabinolic acid. Also the role of non-psychoactive cannabinoids as components of cannabis tea are discussed. The results obtained in this study provide a clear quantitative insight in the phytochemistry of cannabis tea preparation and can contribute to a better appreciation of this mode of cannabis administration.” — Study
Simultaneous Identification of 2-Carboxy-Tetrahydrocannabinol, Tetrahydrocannabinol, Cannabinol and Cannabidiol in Oral Fluid
Journal of Chromatography B | June 2007Abstract: “Tetrahydrocannabinol (THC) is an important psychoactive ingredient in marijuana, which is the most widely used illegal recreational drug in the USA. Since it is generally smoked, the constituents of the plant material, as well as THC may be present in oral fluid specimens collected for the purposes of drug testing. We present an analytical procedure for the simultaneous determination of the pyrolytic precursor Δ9-tetrahydrocannabinolic acid A, tetrahydrocannabinol, cannabinol and cannabidiol in human oral fluid specimens using gas chromatography mass spectrometry (GC/MS). Solid phase extraction and GC/MS/EI with selected ion monitoring were used, and the linearity of the method ranged from 0–16 ng/mL of neat oral fluid. The recovery of the cannabinoids from the collection pad into the transportation buffer was greater than 70% for all cannabinoids tested at 4 ng/mL, and the intra- and inter-day precision was less than 10.3 and 15.2% for all analytes. The stability of the drugs in oral fluid and of the extracted derivatives was investigated. The procedure was applied to oral fluid specimens taken from habitual marijuana smokers. We have previously reported the presence of the metabolite 11-nor-Δ9-tetra-hydrocannabinol-9-carboxylic acid in oral fluid, but this is the first report of the plant constituent 2-carboxy-THC being detected in saliva.” — Study
Crystallization of Δ1-Tetrahydrocannabinolic Acid (THCA) Synthase from Cannabis Sativa
Acta Crystallographica Section F | July 2005Abstract: “Δ1-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å3 Da−1 assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.” — Study
The Gene Controlling Marijuana Psychoactivity: Molecular Cloning and Heterologous Expression of Δ1-Tetrahydrocannabinolic Acid Synthase From Cannabis Sativa L
The American Society for Biochemistry and Molecular Biology | June 2004Abstract: “Δ1-Tetrahydrocannabinolic acid (THCA) synthase is the enzyme that catalyzes oxidative cyclization of cannabigerolic acid into THCA, the precursor of Δ1-tetrahydrocannabinol. We cloned a novel cDNA (GenBank™ accession number AB057805) encoding THCA synthase by reverse transcription and polymerase chain reactions from rapidly expanding leaves of Cannabis sativa. This gene consists of a 1635-nucleotide open reading frame, encoding a 545-amino acid polypeptide of which the first 28 amino acid residues constitute the signal peptide. The predicted molecular weight of the 517-amino acid mature polypeptide is 58,597 Da. Interestingly, the deduced amino acid sequence exhibited high homology to berberine bridge enzyme from Eschscholtzia californica, which is involved in alkaloid biosynthesis. The liquid culture of transgenic tobacco hairy roots harboring the cDNA produced THCA upon feeding of cannabigerolic acid, demonstrating unequivocally that this gene encodes an active THCA synthase. Overexpression of the recombinant THCA synthase was achieved using a baculovirus-insect expression system. The purified recombinant enzyme contained covalently attached FAD cofactor at a molar ratio of FAD to protein of 1:1. The mutant enzyme constructed by changing His-114 of the wild-type enzyme to Ala-114 exhibited neither absorption characteristics of flavoproteins nor THCA synthase activity. Thus, we concluded that the FAD binding residue is His-114 and that the THCA synthase reaction is FAD-dependent. This is the first report on molecular characterization of an enzyme specific to cannabinoid biosynthesis.” — Study
The Tetrahydrocannabinol and Tetrahydrocannabinolic Acid Content of Cannabis Products
The Journal of Pharmacy and Pharmacology | September 1981Abstract: “Cannabinoid acids readily decarboxylate to the corresponding cannabinoid. Methods are available for the determination of Δ9-tetrahydrocannabinol (THC) and its acids (THCA) and published data on the levels of these compounds in cannabis are summarized. Using gas and liquid chromatography, fresh cannabis (64 samples) and cannabis resin (26 samples) from different countries were examined. Wide variations in the relative amounts of THCA and THC in cannabis were found. For cannabis resin, a wide range of values was also found (0·5: 1 to 6·1: 1), the lower values being in resins from the Indian sub-continent and the higher values in resins from the Mediterranean area. Total THC values were in the range 1·–10·6% in cannabis and 6·0–12·5% in cannabis resin.” — Study
FAIR USE NOTICE: This site contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available in our efforts to advance understanding of issues of significance. We believe this constitutes a ‘fair use’ of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.